1. Industry
Send to a Friend via Email

Your suggestion is on its way!

An email with a link to:


was emailed to:

Thanks for sharing About.com with others!

You can opt-out at any time. Please refer to our privacy policy for contact information.

Discuss in my forum

Galvanic corrosion

What is galvanic corrosion?


Galvanic corrosion is caused by the existence of a galvanic cell - essentially two metals submersed in an electrolyte - that results in an attack on one metal at the expense the other. For a galvanic cell to form, two electrochemically different metals must exist within a localized electrolytic environment.

This type of corrosion is often witnessed in marine environments due to salt water's effectiveness as an electrolyte. Different metals submersed in close proximity in salt water will form an electrolytic cell, resulting in galvanic corrosion.

Over 200 years ago, the British naval frigate Alarm recorded the effects of galvanic corrosion on its hull, which had been plated with copper sheets to prevent damage.

Just two years after attaching the copper sheets, the iron nails that were used to hold the copper to the ship's underside were already severely corroded, causing the copper sheets to fall off.

In this case, two metals of different nobility (copper and iron), immersed in an electrolyte (sea water), created an electrolytic, or galvanic, cell.

How Galvanic Corrosion Works:
Metals and metal alloys all possess different electrode potentials - a relative measure of a metal's tendency to become active in a given electrolyte. The more active, or less noble, a metal is the more likely it will form an anode in an electrolytic environment. While the more noble a metal is, the more likely is will form a cathode when in the same environment.

The electrolyte acts as a conduit for ion migration, moving metal ions from the anode to the cathode. The anode metal, as a result, corrodes more quickly than it otherwise would, while the cathode metal corrodes more slowly and, in some cases, may not corrode at all.

In the case of Alarm, the metal of greater nobility (copper) acted as a cathode, while the lesser noble iron acted as an anode. Iron ions were lost at the expense of the copper, ultimately, resulting in the rapid deterioration of the nails.

How to Protect Against Galvanic Corrosion:
With our current understanding of galvanic corrosion, metal-hulled ships are now fitted with 'sacrificial anodes', which play no direct role in the ships operation, but serve to protect the structural components of the vessel. Sacrificial anodes are often made of zinc and magnesium, metals with very low electrode potentials. As sacrificial anodes corrode and deteriorate they must be replaced.

In order to understand what metal will become an anode and which will act as a cathode in electrolytic environments, we must understand the metals' nobility, or electrode potential. This is generally measured with respect to the Standard Calomel Electrode (S.C.E.).

A list of metals, arranged according to electrode potential (nobility) in flowing seawater can be seen in the table below.

It should also be pointed out that galvanic corrosion does not only occur in water. Galvanic cells can form in any electrolyte, including moist air or soil, and chemical environments.

Galvanic Series In Flowing Sea Water

Steady State Electrode Material Potential, Volts
(Saturated Calumel Half-Cell)
Graphite +0.25
Platinum +0.15
Zirconium -0.04
Type 316 Stainless Steel (Passive) -0.05
Type 304 Stainless Steel (Passive) -0.08
Monel 400 -0.08
Hastelloy C -0.08
Titanium -0.1
Silver -0.13
Type 410 Stainless Steel (Passive) -0.15
Type 316 Stainless Steel (Active) -0.18
Nickel -0.2
Type 430 Stainless Steel (Passive) -0.22
Copper Alloy 715 (70-30 Cupro-Nickel) -0.25
Copper Alloy 706 (90-10 Cupro-Nickel) -0.28
Copper Alloy 443 (Admiralty Brass) -0.29
G Bronze -0.31
Copper Alloy 687 (Aluminum Brass) -0.32
Copper -0.36
Alloy 464 (Naval Rolled Brass) -0.4
Type 410 Stainless Steel (Active) -0.52
Type 304 Stainless Steel (Active) -0.53
Type 430 Stainless Steel (Active) -0.57
Carbon Steel -0.61
Cast Iron -0.61
Aluminum 3003-H -0.79
Zinc -1.03

Source: ASM Handbook, Vol. 13, Corrosion of Titanium and Titanium Alloys, p. 675.

Follow Terence on Google+

©2014 About.com. All rights reserved.